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Summary 

A method which allows the determination of all rate constants, initial 
concentrations and extinction coefficients in a chemical system with three 
constituents coupled by first-order reactions is developed. The only condi- 
tion required is that the spectra of one species and of the equilibrated system 
are known or that one species does not absorb in the spectral region under 
investigation. The method has been successfully used to discriminate between 
all possible kinetic schemes which can be derived from the cyclic scheme 

Generalization to multiexponential decays is discussed. 

1. Introduction 

The solutions of the set of differential equations 

$A=KA 

describing any complex system of coupled first-order (or pseudo-first-order) 
reactions can always be written in the form 

At(t) = 2 CZij t?Xp(-Oj t) (1) 
i=l 

where Ai is the concentration of the ith component as a function of time 
and n is the total number of constituents. The 0j are the eigenvalues of the 
kinetic matrix K, and they can be expressed as algebraic functions of the 
rate constants alone although this may be difficult for large systems. The 
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pre-exponential factors aij are generally functions of both the rate constants 
and the initial concentrations. A detailed description of the eigenvalue 
problem in first-order kinetics with special emphasis on the formal mathe- 
matical analogy with normal coordinate analysis has been given by Matsen 
and Franklin [l]. In order to obtain the optical density D, at the wave- 
length v as a function of time eqn. (1) must be expressed as a linear com- 
bination with the molar absorptivities as coefficients: 

D v(t) = 2 eviAi(t) 
r'=l 

(2) 

If the change in the absorbance 

A-&t, = Q,(t) - D,,, 4 m) 

is recorded, as is usually the case in flash photolysis, the kinetic rate law 
is given by 

n-1 

AD,,,, = C dvj eXP<-ej t) (3) 
j=l 

where 

i=l 

One eigenvalue 0 in eqn. (1) must be zero as a consequence of mass consei-va- 
tion in a closed system and the constant term cancels owing to the use of the 
difference AD,; thus the summation is over n - 1 rather than n. 

The eigenvalues Sj and the corresponding pre-exponential factors dpj are 
obtained by fitting the experimentally obtained kinetic curves to eqn. (3). 
This gives a system of 2(n - 1) algebraic equations from which the rate 
constants are to be extracted. As long as there are n - 1 unknown rate 
constants this procedure is straightforward. However, in the more general 
case the number of unknown rate constants exceeds the number of eigen- 
values. Since in flash photolysis the initial concentrations immediately after 
the flash and the extinction coefficients of the transients are usually 
unknown it is impossible to solve the inverse kinetic eigenvalue problem 
without additional independent information. In other words it is necessary 
to solve the matrix equations 

(@E-K)=0 

(E is the unit matrix) where only 8 is known and 

d = ae 

where only d is known and a contains the unknown initial concentrations 
and the elements of K. This is a typical poorly posed problem but it is not 



19 

trivial even for n = 3. It is the purpose of this paper to show how this 
problem of underdetermination can be overcome by analysing the kinetic 
curves at a sufficiently large number of different wavelengths. In particular 
we shall demonstrate the determination of all rate constants, extinction 
coefficients and initial concentrations of the transients for the scheme 

k 12 RV, kl3 

A2 _ Al f 
k21 

t--- A3 
hv, k31 

2. Analysis of syslx?m (4) 

The expressions for the eigenvalues O1 and O2 and the pre-exponential 
factors d,, and dv2 were obtained from the general solution given in ref. 2 

(4) 

for the three-membered cyclic system by neglecting kZ3 and ks2 : 

k 
+ k31) f 

12 -k2l +k13 +k31 
2 l/2 

2 
+ ku(k21 -k31) 

d, = klz(l --h,) +b+b Ckdl -X,1 -k&b(o) + &Jo x 

CA1 - A2 Pl 
&co, - 

(Xl - h2Wl 

km + k31 

k13 
(X2-1)-q +,--1)+X, 

t1 

d _ kl2U -X2) + kl3 + k31 
2- 

01- x2b32 
40, - 

{k,l(l - x2) - lz3,)A2(,> + k,,Co X 
01 - x2w2 

63 + k31 

k 
Or-1) 

13 1 

(5) 

(6) 

(7) 

where 

k x1= 21 - k31 

k21 - h 

k h2= 21 - k31 
k21- 02 

and Co = [Al] + [AZ] + [A31 is the total analytical concentration. 
In the particular case investigated here the extinction coefficient e2 is 

known to be zero over the entire spectral range under investigation. An 
apparent extinction coefficient 
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e,IAlle + ~3L43le 
Eapp = 

[AlIe + [A31e 

and an equilibrium constant 

K = [&I, + W31e 
e 

IA21, 

(8) 

(9) 

can be defined for the equilibrated system. Since it is possible in this special 
case to shift the equilibrium so far to the right that [A,], becomes negligible 
(kzl has been proved to be a pseudoconstant) eapp can also be measured 
under the condition k21 3- k12 which makes the determination of K, straight- 
forward. It should be emphasized that a knowledge of K, is not absolutely 
necessary for the analysis described here (see below}. A more detailed inter- 
pretation of the experimental results is given elsewhere [3,4]. 

In the first stage of the analysis the kinetic curves measured at a number 
of different wavelengths in a spectral region chosen as broad as possible are 
fitted to the biexponential rate law in order to obtain the matrix d and the 
eigenvalues 6, together with their standard deviations. The weighted mean 
of the eigenvalues is calculated using the reciprocal variances of the individual 
8vj as statistical weights. It should be noted that the biexponential model 
can only be used if there is no systematic variation in the 8, with the wave- 
number of the analysis. 

In an alternative approach which needs much less computational effort 
we first add all the kinetic curves digitized at identical times and obtain the 
eigenvalues from a single fitting of the accumulated kinetic curve. Then the 
elements of the matrix d can be calculated using a linear regression method. 
It is obvious that this simplified procedure cannot be used if one or both 
pre-exponential factors changes its sign at some wavenumber and the sum 
becomes very small, i.e. one or even both of the exponentials may vanish in 
the kinetic curve accumulated over various analysis wavelengths. In the next 
step eqns. (5) for the eigenvalues e1 and e2 are used to calculate the total 
possible range for the set of rate constants by assigning arbitrary but reason- 
able values to as many rate constants as necessary to make the system of 
equations solvable. From the condition that all rate constants have to be real 
and positive it follows that the solutions exist over only a comparatively 
small finite range. 

In the particular case investigated here we have two eigenvalues and 
four unknown rate constants. The additional eqn. (9) for the equilibrium 
constant reduces the number of optional rate constants to one. Obviously 
an upper limit k,, < 0, + O2 exists for all rate constants; furthermore there 
is a lower limit, for k3, which is readily detected by the appearance of complex 
solutions for some of the remaining constants. Figure 1 shows the result of 
this calculation. 
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Fig. 1. Plot of k12, kzk and k13 as functions of k31. 

In the third step of data processing we calculate the initial concentra- 
tions [Al ] O and [AJo and the extinction coefficients el and e3 from the 
analytical expressions for the pre-exponential factors to find a region in the 
field of rate constants for which the following reasonable initial concentra- 
tions and extinction coefficients can be obtained: 

0 < [&lo < Co o< f,j 

When a physically reasonable solution is obtained it is improved further 
by trial and error until the calculated initial concentrations are independent 
of the wavenumber of the analysis. This is indicated by a vanishing correla- 
tion coefficient for the plot of [ AJo versus the wavenumber. A vanishing 
correlation coefficient is a necessary but not a sufficient condition for the 
optimal solution. Statistical criteria derived from testing “runs above and 
below the median” and “runs up and down” [ 5 3 must also be fulfilled, but 
they have been found to be unsatisfactory for discriminating between solu- 
tions close to the optimum solution. 

A “theoretical” matrix d can be calculated from the optimized solution 
for the rate constants, extinction coefficients and the averaged initial con- 
centrations to obtain the weighted sum of the squared residuals: 

The weights zuVj are the reciprocal variances of dvj,e,p obtained from the 
biexponential fit to the individual decay curves. We now determine whether 
S reaches a minimum for small variations in the adjusted parameters. If the 
analytical expressions for the general three-membered cyclic scheme are used 
for this purpose it is easy to determine whether the neglect of particular 
rate constants is justified or whether the fit can be improved by assigning 



finite values to them. If more than one kinetic scheme gives a physically 
meaningful solution then the scheme with the smallest value of S should be 
taken as the most probable. 

3. Experimental details 

The chemical system consisted of 1.23 X lo-’ M of bromoxylenol blue 
in toluene in the presence of 3.12 X 10V3 M pyridine. AZ is the colourless 
sultone, and Al and A3 are two forms of the yellow open-ring compound. 
Bromoxylenol blue was purchased from Fluka and was used without further 
purification. The flash apparatus was the same as that briefly described in 
ref. 4. The photolysis cell was thermostatted to about 0.2 “C. The solution 
was flashed repeatedly since exactly reproducible curves were obtained even 
after 20 flashes if the sample was allowed to equilibrate thermally for 
10 min after each flash. The kinetic curves were recorded at 21 wavelengths. 

All the calculations were performed using an EMG 666 desk calculator. 

4. Results and discussion 

Figure 2 shows a set of transient spectra obtained experimentally. 
The values e1 = 36.2 f 1.3 s-l and 19~ = 2.24 f 0.10 s-l were calculated from 
the cumulative kinetic curves. The experimental factors dvj are shown in 
Fig. 3 together with those calculated from the final solution. Figure 1 shows 
the graph of the dependence of k 12, kzl and k 13 on the arbitrarily chosen kJ1. 
The range over which positive extinction coefficients and positive initial 
concentrations are calculated for all kinetic curves is indicated. It is also 
remarkable that only one of the two roots for k,, and k,, fulfils the condi- 
tions given above. Table 1 shows the results of the linear regression [Al],-, 
versus wavelength for some sets of rate constants together with the sum of 

A 0-Q. 

.2 

350 400 450 V/nm 

Fig. 2. Set of transient spectra constructed from the kinetic curves. The numbers on the 
curves give the delay times in milliseconds. 
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Fig. 3. Plot of the pre-exponential factors dvj us. wavelength; +, experimental data; 0, 

calculated from the final solution. 

the squared residuals. Because the relative error prel of the pre-exponential 
factors was found to be approximately constant in this example (2% < prel < 
4%) Wvj WAS set equal to d, -’ for simplicity. It can be seen that the minimum 
for T coincides well with that for S. 

Furthermore the fit is not improved by either varying K, slightly or 
including kz3 or ks2. Figure 4 shows the spectra of the components from 
four independent runs. 

We have also attempted to use the same method to fit the experimental 
data to the following models: 

A2 A2 A2 A2 

Since an interchange of Al and A3 in the schemes only means an arbitrary 
change in the labelling, obviously no further schemes exist which contain 
four or less rate constants and which allow all constituents to remain in 
equilibrium. It has been found that there is no set of positive rate constants 
which is consistent with the initial concentrations 0 < [A, Jo < Co and positive 
extinction coefficients throughout the entire spectral region. 
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TABLE 1 

The correlation coefficient r for the linear regression [All0 versus IJ and the squared sum 
of the residuals within the acceptable limits of the rate constants 

k 12 km 

20.7 12.2 4.86 0.660 -0.76 

19.8 13.7 4.22 0.690 -0.51 
19.5 14.1 4.06 0.700 -0.34 
19.3 14.5 3.92 0,710 -0.10 
19.2 14.7 3.88 0,713 0.01 
19.0 14.9 3.79 0.720 0.18 
18.7 15.3 3.67 0.730 0.42 
18.2 16.0 3.46 0.750 0.71 
17.1 17.5 3.65 0.800 0.88 

16.1 18.8 2.74 0.850 0.91 

19.8 13.8 4.12 0.720 ND 
18.2 15.9 3.53 0.720 ND 
19.0 15.0 3.61 0.720 ND 
16.3 18.5 2.83 0.720 ND 

51.03a 

2.287 
1.284 
0.893 
0.843 
0.808 
0.897 
1.378 
3.527 

6.598b 

1.616C 
1.051d 
0.88ge 
5.656f 

ND, not determined. 
aUnreasonable solution because ~3 is less than zero for Y > 500 nm. 
bUnreasonable solution because [Al]0 is greater than Co for IJ > 490 nm. 
CKe was 5% less than the experimental value. 
dK, was 5% greater than the experimental value. 
ek23 = 0.1;kJ2 -0. 
fk 32 = 0.1;k2s = 0. 

Thus an unequivocal distinction has been made between all alternative 
kinetic schemes which lead to the same form of rate law. This result confirms 
the conclusion drawn from the corresponding extinction difference diagrams 
[‘31. 

5. General conclusions 

If we consider a system of n chemical constituents coupled by (pseudo-) 
first-order reactions we may have as many as n(n - 1) unknown rate constants. 
There are n - 1 equations relating the experimental eigenvalues of the kinetic 
matrix to the rate constants. A further n - 1 equations are available from 
the prefactors of the exponential terms; these equations contain an additional 
n - 1 unknown extinction coefficients and the unknown initial concentra- 
tions. One extinction coefficient or a weighted mean should always be 
measurable in an equilibrated system. The recording of the kinetic curve at 
any further wavelength provides n - 1 new equations for the pre-exponential 
factors which also contain n - 1 new unknown extinction coefficients. 
Consequently if the spectrum of one of the species involved is known in 
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Fig. 4. Spectra of the components A1 and A3 calculated from four independent runs. 

addition to the spectrum of the equilibrated system then in principle all the 
unknowns can be determined from the flash kinetic data alone if the kinetic 
curves are recorded at a sufficient number of different wavelengths. Of 
course, limited experimental accuracy introduces restrictions. General 
statements about the accuracy required cannot be made because it strongly 
depends on the relative magnitudes of the individual rate constants as well as 
on the spectral properties of the species involved in the system under inves- 
tigation. An unfavourable situation is indicated by the rank analysis of the 
corresponding density matrix 161. 
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